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The great nucleophilicity of thiolate anions and the substantial acidity of thiols have 

made thiol-functionalized surfactant micelles objectives of intense interest,lT3 both as ester- 

olysis reagents and as analogs of the cysteine proteinases papain and ficin.4 Initially, "co- 

micellar" reagents were investigated: l-dodecanoyl-D,-cysteine,l alkane thiols,' coenzyme A,3 

and glutathione,3 each solubilized in micellar alkyltrimethylammonium bromides, accelerated the 

basic cleavage of E-nitrophenyl acetate (PNPA). More recently, we examined the first self- 

contained, thiol-functionalized surfactant, AS-Cys (I). 5 Although micellar AS-Cys is an excel- 

lent reagent for the cleavage of PNPA, previous experience with the imidazole-functionalized sur- 

factants, AS-His-Boc (II)6 and 16-Im (III),' suggested that the unknown thiocholine surfactant IV 

(16-SH) would be even more reactive than AS-Cys. We now report the preparation of 16-SH and its 

kinetic behavior with PNPA, where 16-SH proves to be the most reactive self-contained functional 

micellar reagent yet rep0rted.B 
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Choline surfactant V (16-OH) was converted to its triflate, VI (2 equiv. Tf20, 1 equiv. 

CgHgN, CHzC12 solution, 25', 30 min),S and the CH2C12 solution of VI was stirred with excess 1.35 

N aqueous sodium thioacetate (25', 1 hr), dried and stripped, _ 
6C-64', 

affording VII (16-SAC, X=OTf, mp 

81% yield after 3 recryst. from CH2C12/ether).l"*11 Ion exchange with Dowex l-X8 (Cl- 

form, 25-50 mesh, H20, 85-90°, 10 min), followed by filtration and lyophilization, converted 16- 

SAC, OTf to its water-soluble Cl salt in 90% yield.lO Treatment of the latter with deoxygenated 

3E aq. HCl (N2 atm, BOO, 1 hr), lyophilization and recrystallization (CHzClz/ether) gave 80% of 

16-SH, Cl, mp 82-84', > 95% free SH (Ellman's reagent12),13 cf., eq. (1). 
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Cleavage of PNPA by r&cellar 16-SH14 was followed by stopped-flow spectrometry at 400 nm 

and pH 7.0, while nmr experiments demonstrated the sole formation (> 80%) of 16-SAc and pnitro- 

phenoxide. Variation of [16-SH] over 7 concentrations between 9.24x1O-4 and 3.02~lO-~M gave a 

(pseudo-first-order) rate constant-[surfactant] profile, Fig. 1, from which kmax=2.16+o.023 set-l 

- 

-J, - 
at [16-SH]=O.O~~OI~ (point c, Fig. 1). At pH 7.96, k+ was 9.71 set-' with 0.02OM 16-SH. In Table 

I, the latter value is compared with analogous rate constants for the cleavage of PNPA by other 

- 

micellar reagents. For comparison, lc$ for PNPA cleavage by 0.020! Me$CH2CH2SH,Br- (prepared by 

HBr cleavage of conuaercially available acetylthiocholine bromide) was 0.0197~0.001963 see-' at 

pH 8.0 with [thiocholine]=O.O198M. The micellar thiocholine reagent is thus 493 times more reac- 

tive than the model compound under comparable conditions. 

From the concentration dependence of k 
11 

at lower concentrations of 16-SH (Gilford model 250 

spectrophotometer), the "kinetic" critical micelle concentration (cmc) of 16-SH at pH 7.014 is 

-4.2~1O-~g (point A, Fig. 1).15y28 

The pH dependence of k_ was studied in reactions of 4x10w3M 16-SH with 2x10~~~ PNPA, u= - 

0.05, 23', employing various buffers at pH 5.00, 6.17, 7.00, 7.97, 9.55, and 9.84. A plot of log 

(k ) vs. pH gave a sharp break-point at pH 7.3, which we take as the pK, of micellar 16-SH.l* 
--Q 
For comparison, two independent determinations of pK, for Me$CH2CH2SH afforded 7.81 (30°) to 

7.95 (20°)lqa 
ISb 

and 7.80 (temp. not reported). 

From comparisons with other functional micellar reagents (Table I), other surfactant-thiol 

systems, l-3.5 and thiocholine, 16-SH emerges as an extraordinarily reactive micellar reagent.20 

It is more reactive than other previously synthesized, self-contained, functional surfactants on 

the PNPA scale,21 and relative to the appropriate non-micellar model, displays a greater reac- 

tivity enhancement than do other surfactant-thiol systems.1-3*5 Indeed, toward PNPA, 16-SH 

(&at 
=144, pH 7.0, 23') is about as reactive as ficin (sat-173, pH 6.9, 29.6°).23 

Micellization14 lowers the pK, of 16-SH (7.3) relative to that of non-micellar Me3iCH2CH2SH 

(-7.851q) I such that 29% of the 493-fold greater reactivity of the micellar thiocholine surfac- 

tant is attributable to the acid-strengthening effect of micellization and the consequent in- 

crease in the concentration of reactive thiolate ions. 24 The remaining catalytic advantage, a 

factor of 353, must have other origins. The extensive ionization of micellar 16-SH (i.e., zwit- 

terion formation) at pH 824 results in substantial "internal" charge neutralization at the mi- 

cellar surface; the concomitant hydrophobicity and accompanying desolvation may account for much 

of the residual enhanced reactivity22 of micellar 16-SH. 

Micellar 16-SH is -3600 times more reactive than its choline analog, 16-OH (Table I, <zk 

scale), for which estimated pKa's range from lO.525 to 12.4.26 Obviously, much of the catalytic 

advantage of the thiocholine surfactant micelles derives from greater ionization; just how much 

of the advantage can be attributed to factors other than acidity differences cannot be deter- 

mined in the absence of a definitive pKa for 16-OH. 27 We are continuing our studies of 16-SH. 
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Figure 1. Pseudo-first-order rate constants for the pH 7 cleavage of 

PNPA by 16-SH vs. [16-SH]. Point A is the kinetic cmc of 16-SH, and 

point C is taken as k max for reaction of PNPA with micellar 16-SH. 

Points B and B' repre ent -% identical data plotted on two different scales. 

TABLE I. Cleavage of PNPA Catalyzed by Surfactant Micellesa 

Catalyst 
max 

% 

-l b 
(set ) lfcat (l/mol-sec)c krel Ref. 

-cat 

CTACld 0.00019 Il.351 0.014 1.0 6 

16-OHe 0.00190 [1.4] 0.136 9.7 7 

AS-His-Boc 0.029 il.61 1.8 130. 6 

16-11~~ 0.20 L4.01 5.0 360. 7 

AS-cys 1.04 L4.01 26.0 1860. 5 

16-SH 9.71f [2.01 485. 34600. g 

aSee text for catalyst structures; all counterions are chloride. The reaction pH was 8.0; 

see ref. 14 for other conditions. 
b 
values in [ ] are concentrations @x100) at which kmax 

was determined. 
c&at 

= kqV[ 
* 

surfactant]. 
d 
Cetyltrimethylammonium chloride. eO.O1g PO4 buf- 

fer. 
f 
pH 7.96. gThis work. 
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